巻末の解答

勉強したこととか、旅行したこととか、好きなアイドルの話とか

いや暑すぎるやろ(後編)

出張先で打ち合わせ後に同期と新入社員の3人でお昼ご飯。

僕は会社に戻らずそのまま午後休です。

よく行く喫茶店で昨日の記事の続きを書いています。

それにしても今日も今日とて、

いや暑すぎるやろ②

昨日は中学時代の記憶を辿りやり残したことがあるかないか振り返っていました。

次は高校時代です。

高校時代

受験戦争を潜り抜けたこともあり、進学した高校は頭のいいひとがゴロゴロいました。

同級生の進路も京大・東大出身とか医者になったとかよく聞きます。

みんな今何してるんやろう。

 

同級生

同級生とはそんなに話が合いませんでした。

部活動以外では同級生と関わったこともあまりなく、放課後に遊んだこともありませんでした。

校内では少数派の「学食派」だったので、お昼休みも一人でご飯を食べてそこから図書室へ直行する毎日。

ただ中学とは違い、普段一人で過ごしているからと言っても話したときはみんな優しかったです。

ほんと過ごしやすい環境でした。

クーラーの効いた図書室から見える大阪城入道雲が今でも頭に焼き付いています。

(↑ここエモい情景描写です)

部活動

それはさておき、高校時代は自分なりの青春は過ごしていました。

登山部と数学研究部という二つの部活動を兼部。

普段は大阪城の周りをランニングし、月1回程度で近畿圏の山に登ったり、夏は日本アルプスに滞在したりしてた記憶です。

(年に1回程度であればアルプスに行きたいなぁ。)

高校2年の夏に表銀座と呼ばれる有名なコースを縦走したのが一番印象に残っています。

3泊4日ずっと山の上。

がけ、はしご、鎖、なんでもありの総距離38km。

最終目的地の槍ヶ岳の標高は3,180m。

写真では絶対に伝わらない感動があるんだなと学びました。

気分だけ味わいたい方はこちらどうぞ。

www.youtube.com

 

他方、数学研究部でも精力的に活動していました。

部員全員がバラバラにやりたいことをしているときもあったので同好会やサークル的な側面も強かったと思います。

ただ廃部になっては困るため定期的に活動をアピールするという部長としての仕事もこなしており、おかげで高校時代から福岡、広島、東京、名古屋、アメリカなどいろんな場所へ連れて行ってもらいました。

 

自分なりの青春だったと思います。

 

受験勉強

もちろん勉強も忙しかったです。

志望校に受かるために頑張っていましたが、母親から言われた一言でポッキリ心が折れたことはよく覚えています。

なんとか最後まで努力しましたが合格点まで点数が足りず、一年間浪人をすることになります。

(浪人しても落ちちゃったけど)

改めて書いてみると別にやり残したことはないような。

大学時代

浪人したにも関わらず不合格。地元の公立大学の工学部に通うことになりました。

ここで大学院修士課程を含めた6年間を過ごすことになります。

この時期に勉強と人付き合いをもっとしておけばよかったなと後からちょっと思いました。

 

どうしてそんなに数学を

少し話が戻りますが、中学生のときに「ポアンカレ予想*1」という数学の問題を知ったことをきっかけに、「数学者」という職業が中学時代からの夢でした。

なので大学でもほとんど数学の授業しかとっておらず、空きコマも後輩と勉強会をしたりしていました。

 

サークルに所属はしていなかったので大学時代の交友関係はほんの数人。

バイトはいくつかしていたので会社勤めで必要な最低限のコミュニケーションスキルはなんとかなったようです(よかった)

 

大学院に進学して指導教官のもとで数学をより専門的に学んでいきますが、どうも僕は学者には向いていないと判明。

長らく追っていた夢を捨てて就職することにしました。

ほんとにやり残したのか?

最初にやり残したことを二つ書きましたが、ここまで書いた途端に自分の中で本当にやり残したと思っているのか疑問に思えてきました。

 

「もっと勉強しておけばよかったな・・・」

⇒十分してたような。だから僕は就職しても後悔しなかったんだろうなと思う。

 

学生時代に彼女でも作って恋愛しておけばな~」

⇒うん、まぁ学生時代にできていればよかったんだろうけど。

限られた時間の中で他の何かを削れるのか?と問われると躊躇します。

 

書いて自分の考えを整理すればよく分かります。

僕はちゃんとやりたいことがたくさんある人間だと。

 

大事なことはこれからやり残したことが出ないように、

やりたいと思っていることを一つずつやってみるということでしょうか。

「次はあの本を読んでみよう」

「この分野の勉強してみたかった」

「そこ行ってみたいんだよなぁ」

普段感じている何気ない欲求をしっかり書き留めておこうと思います。

 

うん。やっぱり。

今年の夏もきっと楽しそう。

*1:単連結な3次元閉多様体は3次元球面 S3 に同相であるという定理。

ja.wikipedia.org